³í´Ü

À±ÇýÁø
ÁöÁú ´ë»ç Ç¥ÀûÈ­¸¦ ÅëÇÑ Ç×¾Ï Ä¡·á Àü·«ÀÇ °íÂû
À±ÇýÁø ¿ï»ê°úÇбâ¼ú¿ø »ý¸í°úÇаú
¸ÞÀÏ haejinyoon@unist.ac.kr

[¼­·Ð]

   Áö¹æ ´ë»ç´Â ¼¼Æ÷¸· ÇÕ¼º ¹× ¿¡³ÊÁö ÀúÀå¼Ò·Î¼­ÀÇ ÁöÁú (triglycerides; TG)À» Æ÷ÇÔÇÏ¿© ¼¼Æ÷ Ç׻󼺿¡ ¸Å¿ì Áß¿äÇÒ »Ó ¾Æ´Ï¶ó, ´ë»çÁúȯ¿¡¼­ÀÇ Áø´Ü ¸¶Ä¿·Î ¾²¿©¿Ô´Ù. ¿ª»çÀûÀ¸·Î, ¼¼Æ÷ÀÇ ÁöÁúÀº BODIPY ¹× oil red O stainingÀ» »ç¿ëÇÏ¿© »ýÈ­ÇÐÀû ¹× ÇüÅÂÇÐÀû Ư¡À» ±â¹ÝÀ¸·Î °ËÃâÇÒ ¼ö ÀÖ´Ù [1, 2]. TG, free fatty acid (FFA), cholesterol µîÀÇ ÁöÁúÀº ´ç´¢º´ÀÇ ÁöÇ¥·Î »ç¿ëµÈ´Ù [3, 4]. ÃÖ±Ù ´õ ¼¼ºÐÈ­µÈ ÁöÁú Á¾À» ½Äº°ÇÏ´Â ±â¼úÀÇ ¹ßÀüÀ¸·Î, ´ë»ç Áúȯ»Ó¸¸ ¾Æ´Ï¶ó »ý¸®Çп¡¼­ ÁöÁú Ç׻󼺿¡ ´ëÇÑ ÀÌÇظ¦ ³ôÀÏ ¼ö ÀÖ´Ù. Áú·®ºÐ¼®¹ýÀ» ÀÌ¿ëÇÑ lipidomics ¹× metabolomics »Ó ¾Æ´Ï¶ó, CRISPR ±â¹Ý À¯ÀüÀÚ ½ºÅ©¸®´×À» °áÇÕÇϸé ÁöÁúÀÌ ¼¼Æ÷¿¡¼­ ¾î¶² ´ë»çÀå¾Ö¸¦ ÀÏÀ¸Å°´ÂÁö¿Í ÀÌ¿¡ µû¸¥ »õ·Î¿î Á¶ÀýÀÚ¸¦ ½Äº°ÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áú ¼ö ÀÖ´Ù [5, 6]. ƯÈ÷, °úµµÇÑ ÁöÁú¿¡ Àå±â°£ ³ëÃâµÇ¾î ¼¼Æ÷°¡ ¹Þ´Â À¯ÇØÇÑ ¿µÇâÀ» 'ÁöÁú µ¶¼º (lipid toxicity)'À̶ó°í Çϸç [7, 8], ¼ÒÆ÷ü(ER) ½ºÆ®·¹½º, »êÈ­ ½ºÆ®·¹½º, ¹ÌÅäÄܵ帮¾Æ ±â´É Àå¾Ö, ÀÚ°¡Æ÷½Ä Àå¾Ö ¹× ¿°Áõ µîÀÌ ÁöÁú µ¶¼º¿¡ ºÐÀÚ±âÀü¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù°í ¾Ë·ÁÁ®ÀÖ´Ù [7]. ¿¹¸¦ µé¸é, ¾Ë·ÁÁø µ¶¼º Æ÷È­ Áö¹æ»êÀÎ palmitate (C16:0)´Â ¸¸¼º °ñ¼ö¼º ¹éÇ÷º´¿¡¼­ ÁöÁú µ¶¼ºÀ» ÅëÇØ ER stress¸¦ ÅëÇÑ ¼¼Æ÷»ç¸êÀ» ÀÏÀ¸Å²´Ù [5]. ¾Ï¼¼Æ÷¿¡¼­ Áö¹æ ´ë»ç´Â À¯ÀÍÇϱ⵵ ÇÏ°í, µ¶¼ºÀ» °¡Áö´Â ¾ç³¯ÀÇ °Ë ¿ªÇÒÀ» Çϱ⠶§¹®¿¡, (1) Èí¼ö ¶Ç´Â ÁöÁú ÇÕ¼º°ú ÁöÁúÀÇ ´ë»ç°¡ ÇÏÀ§ ½ÅÈ£ Àü´Þ °æ·Î¿¡ ÁÖ´Â ¿µÇâ, (2) ÁöÁú Áß°£Ã¼ÀÇ ¼¼Æ÷³» ÃàÀûÀº ¾î¶»°Ô ¼¼Æ÷ ±â´É Àå¾Ö¿¡ Á÷Á¢ÀûÀ¸·Î ±â¿©ÇÏ´ÂÁö¿¡ ¿©ºÎ¸¦ ÀÌÇØÇÑ´Ù¸é ¾Ï¼¼Æ÷¸¦ Ç¥ÀûÀ¸·Î ÇÏ´Â »õ·Î¿î Ä¡·áÀü·«À» ¼¼¿ï ¼ö ÀÖÀ» °ÍÀÌ¶ó ¿¹»óÇÑ´Ù. º» ³í´Ü¿¡¼­ ´Ù½Ã »õ·Ó°Ô ¶°¿À¸£°í ÀÖ´Â ¾Ï¿¡¼­ÀÇ Áö¹æ´ë»ç¸¦ ¼Ò°³ÇÒ »Ó ¾Æ´Ï¶ó, ¾Ï Ä¡·á¿¡ Ç¥ÀûÀÌ µÇ´Â Áö¹æ ´ë»çÀÇ ¹æÇ⼺°ú ¾Ï¿¡¼­ÀÇ ÁöÁú »ý¹°ÇÐÀÇ Ã¼°èÀûÀÎ ¿¬±¸ÀÇ Çʿ伺À» Á¦¾ÈÇÑ´Ù.

[º»¹®]

1. ¾Ï¿¡¼­ÀÇ Áö¹æ ´ë»ç

  ¼­·Î ´Ù¸¥ ÁöÁú Á¾Àº ¾Ï Áõ½Ä ¹× »ýÁ¸¿¡ ¼­·Î ¹Ý´ëµÇ´Â ¿µÇâÀ» ¹ÌÄ£´Ù. ¼¼Æ÷ Áõ½ÄÀº ¼¼Æ÷¸·°ú ½ÅÈ£ ºÐÀÚ¸¦ ÇÕ¼ºÇϱâ À§ÇØ Áö¹æ»êÀ» ÇÊ¿ä·Î ÇÏ´Â ¸ðµç ¾ÏÀÇ °øÅëÀûÀΠƯ¡ÀÌ´Ù. Á¾¾ç ¼¼Æ÷´Â ºü¸¥ ¼¼Æ÷ ¼ºÀåÀ» À§ÇØ ÁöÁúÀ» Èí¼öÇÏÁö¸¸, Àç¹ÌÀÖ°Ôµµ fatty acid (FA)ÀÇ °úºÎÇÏ¿¡µµ ºÒ±¸ÇÏ°í ÁöÁú µ¶¼ºÀ» ÇÇÇÒ ¼ö ÀÖ´Ù. °íµµ·Î Áõ½ÄÇÏ´Â ¾Ï¼¼Æ÷´Â ÁöÁú ¹× ÄÝ·¹½ºÅ×·Ñ »ýÇÕ¼º¿¡ °ü¿©ÇÏ´Â È¿¼Ò¸¦ »óÇâ Á¶ÀýÇÏ¿©, ƯÁ¤ ¾Ï¿¡¼­ °ø°Ý¼ºÀ» Áõ°¡½ÃŲ´Ù [9]. ¾ÏÀÌ Áö¹æÀ» ´ë»ç ÇÏ´Â ¹æ¹ýÀº »õ·Ó°Ô ¶°¿À¸£´Â ¿¬±¸ ºÐ¾ßÀÌ´Ù. ƯÁ¤ Á¾¾çÀº ÁÖ¿ä ¿¬·á·Î ¾Ë·ÁÁ® ÀÖ´Â Æ÷µµ´ç°ú glutamineÀÇ ´ë»ç¸¦ ¿ìȸÇÏ¿© Áö¹æ»ê »êÈ­¸¦ ¿ì¼±ÀûÀ¸·Î ¼±ÅÃÇÑ´Ù [10]. ¸¹Àº Á¶Á÷¿¡¼­ Áö¹æ»êÀº ¿ì¼¼ÇÑ ¿¬·á ¼±ÅÃÀÌ ¾Æ´Ï¸ç, ¿ÀÈ÷·Á Áö¹æ»ê ´ë»ç´Â ´ë»ç Ç×»ó¼ºÀ» ȸº¹Çϱâ À§ÇÑ ¼ö´ÜÀ¸·Î ½ºÆ®·¹½º ¶Ç´Â ¿µ¾ç¼Ò °í°¥ »óŸ¦ À§ ÁغñµÈ´Ù. Áö¹æ»ê ´ë»ç·ÎÀÇ ´ë»ç º¯°æÀº mouse hepatocellular carcinomas, primary human liver, ±×¸®°í lung carcinomas µî¿¡¼­ ¹ß»ýÇÑ´Ù. ¾Ï ¼¼Æ÷´Â ¼¼Æ÷¸· »ýÇÕ¼ºÀ» Áö¿øÇϱâ À§ÇØ palmitate¸¦ Àß »ç¿ëµÇÁö ¾Ê´Â ºÒÆ÷È­Áö¹æ»ê sapienate·Î º¯È¯ÇÑ´Ù [11]. ¶ÇÇÑ, ¿øÇüÁú¸· ¸®¸ðµ¨¸µÀº ¹ß¾Ï ½ÅÈ£ Àü´ÞÀÇ Çʼö ±¸¼º ¿ä¼ÒÀÌ´Ù. ÁöÁúÀº ¼¼Æ÷¸·ÀÇ ÁÖ¼ººÐÀÌ¸ç ¼¼Æ÷ ±¸È¹ »çÀÌÀÇ À庮À» ¸¸µå´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù. ¼¼Æ÷¸·¿¡¼­ ÁöÁúÀÇ ±¸Á¶, ±¸¼º ¹× »óÈ£ ÀÛ¿ëÀÇ ¹Ì¹¦ÇÑ º¯È­´Â »ý¹°ÇÐÀû ±â´ÉÀ» ±ØÀûÀ¸·Î º¯È­½Ãų ¼ö ÀÖ´Ù. Æ÷À¯·ù¿¡¼­ÀÇ ÁÖ¿ä ¸· ÁöÁúÀº glycerophospholipids (GPL), sphingolipids, ±×¸®°í sterolÀÌ´Ù [12]. ¸· ÁöÁú ±¸¼º, Æ÷È­ ¼öÁØ ¹× ÁöÁúÀÇ ¼¼Æ÷ ºÐÆ÷´Â ¼Ò±â°ü Ç×»ó¼º, ¼¼Æ÷ ½ÅÈ£, ¿µ¾ç ¹× »êÈ­ ½ºÆ®·¹½º °ü¸®¿¡ Áß¿äÇÑ °ÍÀ¸·Î ¾Ë·ÁÁö¾î¿Ô´Ù [13]. ¸·¿¡ ÀÖ´Â ÀÎÁöÁúÀÇ ±¸¼ºÀÌ ¸· ±¸Á¶¸¦ Á¦¾îÇÏ¿© ¼¼Æ÷³» ½ÅÈ£ Àü´Þ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖÁö¸¸, ¾ÏÀÇ ¿øÇüÁú¸· ±¸¼º ¹× ±¸Á¶ÀÇ ºÐÀÚ ¸ÞÄ¿´ÏÁòÀº ¸íÈ®ÇÏÁö ¾Ê´Ù. ƯÈ÷, glioblastoma¿¡¼­ LPCAT1 (lysophosphatidylcholine acyltransferase) ¹ßÇöÀº EGFR ½ÅÈ£Àü´Þ°ú ³ôÀº »ó°ü°ü°è°¡ ÀÖ´Ù (±×¸² 1). ¾Ë·ÁÁø LPCAT1ÀÇ ÁÖ¿ä »ý¼º¹°ÀÎ PC32:0(PC16:0/16:0, 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC)Àº EGFRÀÇ ÀλêÈ­ ¹× ÇÏÀ§ ½ÅÈ£Àü´ÞÀ» À¯µµÇÏ°í Á¾¾çÇü¼ºÀ» Áõ°¡½ÃÅ°¸ç, Á¾¾ç¼ºÀå¿¡ LPCAT1À» ÅëÇÑ Æ÷È­ phosphocholineÀÌ ÇÊ¿äÇÔÀ» ½Ã»çÇÑ´Ù. µû¶ó¼­, ÁöÁú ´ë»ç´Â ¿øÇüÁú¸· ±¸¼ºÀ» º¯È­½Ãų »Ó ¾Æ´Ï¶ó, oncogenic ½ÅÈ£Àü´ÞÀ» È°¼ºÈ­ÇÏ¿© Á¾¾ç ¼ºÀåÀ» ÃËÁøÇÒ ¼ö ÀÖ´Ù [14].

±×¸² 1. ¾Ï¼¼Æ÷¿Í ÁöÁú ½ÅÈ£Àü´Þ.
±×¸² 1. ¾Ï¼¼Æ÷¿Í ÁöÁú ½ÅÈ£Àü´Þ.
Áö¹æ´ë»ç´Â ¾Ï¼¼Æ÷ÀÇ ½ÅÈ£Àü´Þ¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ£´Ù. ¼¼Æ÷ ¾ÈÀ¸·Î À¯ÀÔµÈ ´ÙÁߺÒÆ÷È­Áö¹æ»êÀº palmitic acidµîÀÇ µ¶¼ºÀ» À¯¹ßÇÏ´Â Áö¹æ»êÀ¸·Î ´ë»çµÇ¾î ER stress¸¦ ÅëÇÑ ¼¼Æ÷ »ç¸ê¿¡ °ü¿©ÇÑ´Ù. ´ÙÁߺÒÆ÷È­Áö¹æ»êÀÇ ´ë»ç´Â ROS À¯·¡ Æä·ÓÅä½Ã½ºÀÇ ¿øÀÎÀÌ´Ù. ER¿¡¼­ ÇÕ¼ºµÇ´Â Lysophosphatidylcholines (LPC)´Â Æ÷È­ phosphocholine ¹× ´ÜÀϺÒÆ÷È­Áö¹æ»êÀÇ »ý»ê¿¡ ±â¿©ÇÏ¿© Æä·ÓÅä½Ã½º¸¦ ¾ïÁ¦ÇÒ »Ó ¾Æ´Ï¶ó ¾Ï¼¼Æ÷ »ýÀåÀ» µ½´Â´Ù. EGFR ½ÅÈ£Àü´Þ ü°è´Â ÇÙ¿¡¼­ÀÇ FASNÀ» È°¼ºÈ­½ÃÄÑ ÁöÁúÇÕ¼ºÀ» ÃËÁøÇÏ¿© phospholipid¹× TAGÀÇ »ý»êÀ» È°¼ºÈ­ÇÏ¿© ¼¼Æ÷¸· ÁöÁú Àç¹èÄ¡ ¹× ¾Ï¼¼Æ÷ »ýÀå¿¡ ±â¿©ÇÑ´Ù.

  Èï¹Ì·Ó°Ôµµ, »ý¹°¹°¸®ÇÐÀûÀ¸·Î ´Ù¸¥ ±¸Á¶ÀÇ Áö¹æ»êÀÇ ¾çÀûÀÎ Á¶ÀýÀº öºÐ ÀÇÁ¸¼º ÁöÁú°ú»êÈ­¿¡ ÀÇÇÑ ¼¼Æ÷»ç¸êÀÎ Æä·ÓÅä½Ã½º (ferroptosis)¸¦ Àû±ØÀûÀ¸·Î Á¶ÀýÇÑ´Ù. ³ôÀº ¼öÁØÀÇ ´ÜÀÏ ºÒÆ÷È­ Áö¹æ»ê (monounsaturated fatty acids, MUFA)Àº ¼¼Æ÷¸·ÀÇ ±¸¼º ¼ººÐÀ¸·Î, ´ÙÁߺÒÆ÷È­Áö¹æ»ê (polyunsaturated fatty acid, PUFA)¿Í °æÀïÇÏ¿© Æä·ÓÅä½Ã½º¸¦ ¾ïÁ¦ÇÑ´Ù (±×¸² 1) [15]. ÀÌ ¼¼Æ÷¸· ÁöÁú ±¸¼ºÀº ¿øÇüÁú¸·¿¡¼­ÀÇ ROS ¾ïÁ¦ ¹× »êÈ­ °¡´ÉÇÑ ´ÙÁߺÒÆ÷È­ Áö¹æ»êÀ» Æ÷ÇÔÇÏ´Â ÀÎÁöÁú ¼öÁØÀÇ °¨¼Ò¿Í °ü·ÃÀÌ ÀÖ´Ù. ÀÌ °úÁ¤Àº acyl-coenzyme A synthetase long-chain family member(ACSL) 3¿¡ ÀÇÇÑ MUFA È°¼ºÈ­¸¦ ÇÊ¿ä·Î ÇÑ´Ù [15]. ACSL3¿Í ¸¶Âù°¡Áö·Î LPCAT3 (lysophosphatidylcholine acyltransferase 3)´Â PUFA°¡ ÀÎÁöÁú¿¡ ÅëÇյǴ µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù. LPCAT3ÀÇ ºÎÁ·Àº ÀÎÁöÁú¿¡ Á¸ÀçÇÏ´Â ´ÙÁߺÒÆ÷È­ Áö¹æ»êÀÎ arachidonic acidÀÇ ±Þ°ÝÇÑ °¨¼Ò¿¡ ÀÇÇØ ¼¼Æ÷¸· ÀÎÁöÁú Á¶¼ºÀÇ Á¶ÀýÀ» À¯µµÇÑ´Ù [16]. ACSL4´Â ¶ÇÇÑ ¼¼Æ÷ ÁöÁú ÇÕ¼ºÀ» À§ÇØ Àå¼â Áö¹æ»êÀ» È°¼º ÇüÅÂÀÎ ¾Æ½Ç-CoA·Î ÀüȯÇÏ´Â °ÍÀ» Ã˸ŠÇÔÀ¸·Î½á, ¹ÌÅäÄܵ帮¾Æ¿¡¼­ ¹æÃâµÇ´Â arachidonic acidÀÇ ¹æÃâÀ» ÃËÁøÇÑ´Ù [17]. ACSL4´Â arachidonoyl-CoA¸¦ »ý¼ºÇÏ¿© ¿¡½ºÅ׸£È­µÇÁö ¾ÊÀº arachidonic acid¸¦ Áõ°¡½ÃÅ´À¸·Î½á, ÁöÁú µ¶¼ºÀ» Á¦ÇÑÇÏ¿©, castration-resistant prostate cancerÀÇ ¼¼Æ÷»ç¸êÀ» ¾ïÁ¦ÇÏ°í »ýÁ¸À» Áõ°¡½ÃŲ´Ù [17]. º» ¿¬±¸´Â, ¹ÌÅäÄܵ帮¾Æ¿¡¼­ PUFAÀÇ ÃàÀûÀÌ membrane depolarization ¹× electron transport chain uncoupling¿¡ ±â¿©ÇÏ¿© ROS »ý¼ºÀ» Áõ°¡ÇÏ¿© ÀÌ ÁöÁú µ¶¼ºÀ» ÀÏÀ¸Å´À» ½Ã»çÇÑ´Ù. µû¶ó¼­, ƯÁ¤ Áö¹æ»êÀº ROS »ý¼º, ER ½ºÆ®·¹½º ¹× Æä·ÓÅä½Ã½º¸¦ À¯¹ßÇϱ⠶§¹®¿¡, ¾Ï¿¡¼­ ÁöÁú Ư¼ºÀÇ ±â´ÉÀ» Á¤ÀÇÇÏ´Â ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù.

2. ¾Ï ¹× ¸é¿ª ¼¼Æ÷ÀÇ ÁöÁú µ¶¼º

  ¾ÏÀº Á¾¾ç ¹Ì¼¼ ȯ°æÀ» ¿ìȸÇÏ´Â ±âÀüÀ¸·Î, Áö¹æ µ¶¼ºÀ¸·ÎºÎÅÍ Á¤»ó ¼¼Æ÷¸¦ º¸È£ÇÏ´Â °æ·Î¸¦ hijacking ÇÑ´Ù. ¾Ï¼¼Æ÷´Â ºÐÇظ¦ À§ÇØ ¸®¼ÒÁ» ±¸È¹¿¡ ´ëÇÑ ¼¼Æ÷ ³» »ý¼º¹° ¹× ¼Ò±â°üÀ» Ç¥ÀûÀ¸·Î ÇÏ´Â ÀÚ°¡Æ÷½Ä (autophagy)À» »ç¿ëÇÏ¿© µ¶¼º ¼¼Æ÷ ÁöÁú ¹× ³ëÆó¹°ÀÇ ÃàÀûÀ» ¹æÁöÇÑ´Ù [18]. Palmitate ¹× ±âŸ Æ÷È­ Áö¹æ»êÀº À¯¹æ¾Ï¿¡¼­ apoptosis¸¦ À¯µµÇÏ´Â ¹Ý¸é, oleate¿Í °°Àº ºÒÆ÷È­ Áö¹æ»êÀº ¾Ï ¼¼Æ÷¿¡ µ¶¼ºÀÌ ¾ø´Â °ÍÀ¸·Î ¾Ë·ÁÁ³´Ù [19, 20]. ¾Ï¼¼Æ÷´Â Áö¹æ»ê, Diacylglycerol (DAG), cholesterol ¹× ceramide¸¦ Æ÷ÇÔÇÑ ÀáÀçÀû µ¶¼º ÁöÁúÀ» lipid droplet¿¡ ÀúÀåµÉ ¼ö ÀÖ´Â triglyceride, cholesterol ester, ±×¸®°í acylceramide·Î ÀüȯÇÔÀ¸·Î½á ½º½º·Î¸¦ ÁöÁú µ¶¼ºÀ¸·ÎºÎÅÍ º¸È£ÇÑ´Ù [21]. ¶ÇÇÑ, glioblastoma¿¡¼­ DGAT1Àº °úµµÇÑ Áö¹æ»êÀ» triglyceride¿Í lipid dropletÀ¸·Î ÀüȯÇÔÀ¸·Î½á »êÈ­Àû ¼Õ»óÀ¸·ÎºÎÅÍ ¹þ¾î³¯ ¼ö ÀÖ´Ù [22]. µû¶ó¼­, DGAT1À» ¾ïÁ¦ÇÏ¸é °úµµÇÑ Áö¹æ»êÀÌ ¹ÌÅäÄܵ帮¾Æ·Î À̵¿ÇÏ¿© »êÈ­µÇ¹Ç·Î, ³ôÀº ¼öÁØÀÇ ROS »ý¼º, ¹ÌÅäÄܵ帮¾Æ ¼Õ»ó, cytochrome C ¹æÃâ ¹× ¼¼Æ÷ »ç¸êÀÌ ¹ß»ýÇÑ´Ù. DGAT1À» Â÷´ÜÇϸé Áö¹æ»êÀ» ÀÎÁöÁú·Î º¸³¾ ¼öµµ ÀÖ°í, Æä·ÓÅä½Ã½º¸¦ Áõ°¡½Ãų ¼ö ÀÖ´Ù [23].

±×¸² 2. Áö¹æ»ê ÃàÀû°ú ¼¼Æ÷ »ç¸êÀÇ »ó°ü°ü°è
±×¸² 2. Áö¹æ»ê ÃàÀû°ú ¼¼Æ÷ »ç¸êÀÇ »ó°ü°ü°è
´ÙÁߺÒÆ÷È­Áö¹æ»êÀº ÀáÀçÀû µ¶¼ºÁöÁúÀÎ Diacylglycerol (DAG)¸¦ DGAT1À» ÅëÇØ ÀúÀåÇÏ¿© ¹ÌÅäÄܵ帮¾Æ¿¡¼­ÀÇ °ú´ÙÇÑ Áö¹æ»ê »êÈ­¸¦ ÅëÇÑ ROS»ý¼º°ú ¹ÌÅäÄܵ帮¾Æ ¼Õ»ó ¹× cytochrome C ¹æÃâÀ» ÅëÇÑ ¼¼Æ÷»ç¸êÀ» ¾ïÁ¦ÇÒ ¼ö ÀÖ´Ù. CD36Àº ¼¼Æ÷³» FFA Èí¼ö¸¦ Á¶ÀýÇÏ´Â ¼ö¼Ò¿¡·Î ¾Ï¼¼Æ÷¿¡¼­ Áö¹æ ÃàÀû¿¡ °ü¿©Çϸç, ¾Ï¼¼Æ÷¿Í ¾Ï ¸é¿ª¿ä¹ý¿¡¼­ÀÇ Ç¥ÀûÀÎÀÚÀÌ´Ù.

  ¾Ï ¼¼Æ÷¿¡¼­µµ ÀÛ¿ëÇÏ´Â Æä·ÓÅä½Ã½º [24]´Â ÀÎÁöÁú¿¡ Á¸ÀçÇÏ´Â ´ÙÁߺÒÆ÷È­Áö¹æ»êÀÇ ÁöÁú °ú»êÈ­°¡ ´Ù¾çÇÑ ÁöÁú °ú»êÈ­¼ö¼Ò¸¦ »ý¼ºÇÑ °á°úÀÌ´Ù [25]. Gastric cancer¿¡¼­ ELOVL5 ¹× FADS1(fatty acid desaturase 1)ÀÇ °ú¹ßÇöÀº ferroptosis sensitizationÀ» À¯¹ßÇÑ´Ù. Arachidonic acidÀÇ º¸ÃæÀº À§¾Ï ¼¼Æ÷¿¡¼­ Æä·ÓÅä½Ã½º¿¡ ´ëÇÑ ¹Î°¨¼ºÀ» ȸº¹½ÃŲ´Ù [26]. GPX4 È¿¼Ò´Â Æä·ÓÅä½Ã½ºÀÇ °¡Àå Àß ¾Ë·ÁÁø Á¶ÀýÀÚÀ̸ç, ÁöÁú °ú»êÈ­¹°À» ÁßÈ­ÇÏ¿© ¼¼Æ÷¸¦ º¸È£ÇÑ´Ù. Æä·ÓÅä½Ã½º ¾ïÁ¦ ´Ü¹éÁú 1(FSP1)¿¡ ÀÇÇÑ Æä·ÓÅä½Ã½º ¾ïÁ¦´Â ¿©·¯ ¾Ï¼¼Æ÷¿¡¼­ ÁöÁú °ú»êÈ­¹°ÀÇ ÀüÆĸ¦ ¾ïÁ¦ÇÏ´Â lipophilic radical-trapping antioxidant ¿ªÇÒÀ» ÇÏ´Â Coenzyme Q¸¦ °¨¼Ò½ÃŲ´Ù [27, 28]. ÃÖ±Ù ¿¬±¸¿¡¼­´Â ¸é¿ª¿ä¹ýÀ¸·Î È°¼ºÈ­µÈ CD8+ T ¼¼Æ÷°¡ Á¾¾ç ¼¼Æ÷¿¡¼­ Æä·ÓÅä½Ã½º °ü·Ã ÁöÁú °ú»êÈ­¸¦ ÃËÁøÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ³´Ù. ÀÌ´Â Æä·ÓÅä½Ã½º Áõ°¡°¡ ¸é¿ª¿ä¹ýÀÇ Ç×Á¾¾ç È¿´É¿¡ ±â¿©ÇÑ´Ù´Â °ÍÀ» º¸¿©ÁØ´Ù[29]. µû¶ó¼­ »ýÇÕ¼º ¹× peroxisomal oxidation °æ·ÎÀÇ Á¶ÀýÀº Æä·ÓÅä½Ã½º ¸Å°³ ¾Ï Ä¡·á¸¦ À§ÇÑ »õ·Î¿î ±âȸ¸¦ Á¦°øÇÒ ¼ö ÀÖ´Ù.

3. ÁöÁú ´ë»ç Ç¥ÀûÈ­ Ä¡·á¹ý

  Áö¹æ ´ë»ç »ý¹°ÇÐÀº ´ë»ç¼º Áúȯ Ä¡·á¸¦ À§ÇÑ »õ·Î¿î ¸ñÇ¥°¡ µÉ ¼ö ÀÖ´Ù. ÇöÀç Á÷Á¢ÀûÀÎ Áö¹æ»ê Ç¥ÀûÀº ¾øÁö¸¸ Etomoxir [10], Ranolazine [30], Soraphen-A [31], TOFA(5-(tetradecyloxy)-2-furoic acid) [32], A-769662 [33] µîÀ» ÅëÇØ long-chain acyl carnitineÀÇ ¹ÌÅäÄܵ帮¾Æ·ÎÀÇ À¯ÀÔÀ» ¾ïÁ¦ÇÏ¿© Áö¹æ»ê »êÈ­¸¦ ¾ïÁ¦ÇÒ ¼ö ÀÖ´Ù. RanolazineÀº Áö¹æ»ê »êÈ­¸¦ Ç¥ÀûÀ¸·Î ÇÏ´Â Ç×¾ÏÁ¦·Î FDA ½ÂÀÎÀ» ¹Þ¾Ò´Ù. »õ·Î¿î Áö¹æ»ê ÇÕ¼ºÀÇ ¾ïÁ¦´Â ºÎÀÛ¿ëÀ» À¯¹ßÇÒ ¼ö ÀÖÁö¸¸, fatty acid synthase (FASN) ±æÇ×Á¦ÀÎ TVB-2640Àº ÇöÀç ÃßÁ¤ ¾Ï Ä¡·á¹ýÀ¸·Î Phase II trial¿¡¼­ ¿¬±¸µÇ°í ÀÖ´Ù [34]. Metformin [35]°ú AICARÀº Áö¹æ»ê »êÈ­¿Í Áö¹æ»ê ÇÕ¼º ¸ðµÎ¸¦ Áõ°¡½ÃÅ°´Â AMPK È°¼ºÈ­Á¦´Ù [36]. ÀÌ´Â Ç× ´ç´¢»Ó ¾Æ´Ï¶ó Ç¥Àû Ç×¾ÏÁ¦·Î ¾²ÀÏ ¼ö ÀÖ´Ù. Áö¹æ»ê ÇÕ¼º °æ·Î¸¦ Ç¥ÀûÀ¸·Î ÇÏ´Â ¾à¹°¿¡´Â phosphoinositide 3-kinase (PI3K) ½ÅÈ£ Àü´Þ °æ·ÎÀÇ SB-204990 [37] ¹× LY294002 [38] Á¶ÀýÀÚ°¡ ÀÖÀ¸¸ç ¾Ï¼¼Æ÷ÀÇ »ýÀåÀ» Ç¥ÀûÇÏ´Â ¾à¹°·Î ¾²ÀÏ ¼ö ÀÖ´Ù.

  »Ó¸¸ ¾Æ´Ï¶ó, ÁöÁú ¼ö¼Ûü´Â »õ·Î¿î ¾Ï Ä¡·á Ç¥ÀûÀÌ µÉ ¼ö ÀÖ´Ù. CD36Àº ¼¼Æ÷³» FFA Èí¼ö ¹× traffickingÀ» ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ¼ö¼Ûü Áß ÇϳªÀÌ´Ù (±×¸² 2) [39]. ´ç´¢º´¿¡¼­´Â CD36 ¼¼Æ÷¸·¿¡¼­ÀÇ ¹ßÇö ¼öÁØ°ú turnover rateÀÌ ±³¶õµÇ¾î, Áö¹æ»êÀÇ ¼¼Æ÷³» È°¿ë Àå¾Ö·Î À̾îÁö°í, CD36 À¯ÀüÀÚÀÇ º¯ÀÌ°¡ ´ë»ç ÁõÈıº¿¡ ´ëÇÑ °¨¼ö¼º¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù [40]. ¾Ï°ú °ü·ÃÇÏ¿© CD36À» Â÷´ÜÇÏ´Â µ¥ »ç¿ëµÇ´Â ÁßÈ­ Ç×ü´Â oral cancer, human melanoma¿Í breast cancer À¯·¡ Á¾¾ç ÀüÀ̸¦ °í¹«ÀûÀ¸·Î ¾ïÁ¦½ÃŲ´Ù [41]. Palmitic acid ¶Ç´Â °íÁö¹æ½ÄÀ̴ ƯÈ÷ CD36+ ÀüÀÌ °³½Ã ¼¼Æ÷ÀÇ ÀüÀÌ °¡´É¼ºÀ» °­È­ÇÏ¿© ÀüÀÌ °³½Ã ¼¼Æ÷°¡ ½ÄÀÌ ÁöÁú (dietary lipid)¿¡ ¹ÝÀÀÇÔÀ» ½Ã»çÇÑ´Ù. CD36ÀÇ Ä¡·áÀû °ü·Ã¼ºÀº ¸é¿ª ¼¼Æ÷ ±â´ÉÀ» Á¶ÀýÇÏ¿© Ç׾Ͽ¡µµ È¿°ú°¡ ÀÖ´Ù. CD36Àº Áß¾Ó ´ë»ç Á¶ÀýÀÚ·Î ÀÛ¿ëÇÏ´Â Á¾¾ç³» Treg ¼¼Æ÷¿¡¼­ ³ô°Ô ¹ßÇöµÈ´Ù. ¶ÇÇÑ, Treg ¼¼Æ÷¿¡¼­ CD36ÀÇ À¯ÀüÀû Á¦°Å´Â ¸é¿ª Ç×»ó¼ºÀ» À¯ÁöÇϸ鼭 Á¾¾ç ¼ºÀåÀ» ¾ïÁ¦ÇÏ°í, Á¾¾ç ħÀ± ¸²ÇÁ±¸¿¡¼­ Ç×Á¾¾ç ¹ÝÀÀ¼ºÀ» Çâ»ó½ÃŲ´Ù [42]. µû¶ó¼­, Á¾¾ç³» Treg ¼¼Æ÷¸¦ ¼±ÅÃÀûÀ¸·Î Æı«ÇÏ´Â °ÍÀ¸·Î ¾Ï ¸é¿ª ¿ä¹ý (cancer immunotherapy)À» ½ÇÇöÇÒ ¼ö ÀÖ´Ù.

[°á·Ð]

  Áö¹æ ´ë»çÀÇ º¯È­´Â ¾Ï¼¼Æ÷ÀÇ º´Å»ý¸®ÇÐÀûÀÎ º¯È­¸¦ ÀÏÀ¸Å²´Ù. Áö¹æ»ê ´ë»ç¿¡´Â ¿¡³ÊÁö¸¦ »ý¼ºÇÏ´Â ÀÌÈ­ °úÁ¤°ú ´Ù¾çÇÑ ÁöÁú Á¾À» »ý¼ºÇÏ´Â µ¿È­ °úÁ¤ÀÌ Æ÷ÇԵȴ٠(±×¸² 3) [43]. ¹ÌÅäÄܵ帮¾Æ´Â µ¿È­ ¹× ÀÌÈ­ °æ·Î¸¦ Æ÷ÇÔÇÑ Áö¹æ»ê ´ë»ç Á¶Àý¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù. ÀúÀåµÈ Áö¹æ»ê°ú ÀúÀåµÈ ±Û¸®ÄÚ°ÕÀ» ºñ±³ÇÒ ¶§ Áö¹æ»êÀº ź¼öÈ­¹°º¸´Ù 2¹è, 6¹è ´õ ¸¹Àº ATP¸¦ Á¦°øÇϱ⠶§¹®¿¡ ÁöÁú »ý¹°ÇÐÀÇ ¿¬±¸´Â ¼¼Æ÷ÀÇ ¿¡³ÊÁö Ç×»ó¼ºÀ» ÀÌÇØÇϴµ¥ ÇʼöÀûÀÌ´Ù [44]. ¹ÌÅäÄܵ帮¾Æ»Ó ¾Æ´Ï¶ó, ÆÛ¿Á½Ã¼Ø (Peroxisome)Àº ÃÊÀå¼â Áö¹æ»ê ¶Ç´Â ºÐÁöÇü Áö¹æ»êÀÇ Áö¹æ»ê »êÈ­¸¦ [45]. ÁöÁú ´ë»ç¿¡¼­ À¯·¡ÇÑ ¿©·¯°¡Áö ÁöÁúÁ¾Àº ´ë»ç Ç×»ó¼ºÀ» À¯ÁöÇÏ°í, Çʼö ¼¼Æ÷ ±â´ÉÀ» ¹æÇØÇÏ¿© ´ë»ç Àå¾Ö¸¦ À¯¹ßÇÑ´Ù. ƯÈ÷, ¾Ï¼¼Æ÷´Â Áö¹æ ´ë»ç¸¦ È¿°úÀûÀ¸·Î ÀÌ¿ëÇÏ¿© »ýÁ¸À» Çϱ⠶§¹®¿¡, ¾Ï¼¼Æ÷¿¡ À¯ÀÍÇϰųª ¶Ç´Â ÁöÁú µ¶¼ºÀ» ÀÏÀ¸Å°´Â ±âÀüÀ» ÀÌÇØÇÏ°í À̸¦ Ç¥ÀûÀ¸·Î ÇÏ¸é »õ·Î¿î Ç×¾ÏÄ¡·á Àü·«À» ¼¼¿ï ¼ö ÀÖ´Ù. ±âÁ¸¿¡ ¾Ï¼¼Æ÷¿¡¼­ÀÇ Áö¹æ ´ë»ç¸¦ Ç¥ÀûÀ¸·Î FDA ½ÂÀÎÀ» ¹ÞÀº ¿©·¯ Ç×¾ÏÁ¦µéÀº ¾Ï ƯÀÌÀû ´ë»ç Áß Áö¹æ ´ë»ç°¡ ÁÁÀº Àü·«À̶ó´Â °ÍÀ» º¸¿©ÁØ´Ù. Áú·®ºÐ¼®±âÀÇ ¹ß´ÞÀº TG, FFA, cholesterolµîÀÇ ÇÏÀ§ ´ë»çüÀÎ ¿©·¯°¡Áö ÁöÁúÁ¾°ú ¾ÏÀÇ Á÷Á¢ÀûÀÎ »ý¸®Àû ¿¬°ü¼ºÀ» º¸¿©ÁÙ »Ó¸¸ ¾Æ´Ï¶ó »ýü È°¼º ÁöÁúÁ¾ÀÇ Æ¯Á¤ ¾Ï¼¼Æ÷¿¡¼­ÀÇ Á¸Àç¿©ºÎ¿Í ¼öÁØÀ» ¾Ë ¼ö ÀÖ°Ô ÇÑ´Ù.

±×¸² 3. ¼¼Æ÷ ³» Áö¹æ»ê »êÈ­¿Í Áö¹æ »ýÇÕ¼º °æ·Î.
±×¸² 3. ¼¼Æ÷ ³» Áö¹æ»ê »êÈ­¿Í Áö¹æ »ýÇÕ¼º °æ·Î.
Áö¹æ ´ë»ç´Â ¿¡³ÊÁö¸¦ »ý»êÇÏ´Â catabolic processes¿Í Áö¹æ »ýÇÕ¼º¿¡ ÇØ´çÇÏ´Â anabolic processesÀ¸·Î ³ª´µ¸ç, Áö¹æ ´ë»ç¿¡ µû¶ó ¿©·¯°¡Áö ÁöÁúÁ¾ÀÌ °áÁ¤µÈ´Ù. FATP¿Í CD36¿¡ ÀÇÇØ Áö¹æ»êÀÌ ¼¼Æ÷³»·Î À¯ÀԵǸé, Áö¹æ»êÀº ¹ÌÅäÄܵ帮¾Æ·Î À̵¿ÇÏ¿© acetyl-CoA·Î Áö¹æ»ê »êÈ­°úÁ¤À» °ÅÃÄ, ATP¸¦ ¸¸µå´Â TCA cycle¿¡ ¾²ÀδÙ. MCT¸¦ ÅëÇÑ acetateÀÇ À¯ÀÔ°ú glucose transporter¸¦ ÅëÇÑ glucoseÀÇ À¯ÀÔµµ acetyl-CoAÀÇ »ý»ê¿¡ ¾²ÀδÙ. Áö¹æ»ê »êÈ­´Â ¹ÌÅäÄܵ帮¾Æ¿¡¼­ »Ó ¾Æ´Ï¶ó, ÆÛ¿Á½Ã¼Ø¿¡¼­µµ ÃÊÀå¼â Áö¹æ»ê ¶Ç´Â ºÐÁöÇü Áö¹æ»êÀÇ »êÈ­¸¦ ÅëÇØ ÀϾ´Ù. Áö¹æ»ê »êÈ­¿¡¼­ ¸¸µé¾îÁø malonyl-CoA´Â Áö¹æ »ýÇÕ¼ºÀÇ Àü±¸Ã¼·Î½á, palmitate¸¦ »ý»êÇÒ ¼ö ÀÖ´Ù. Long-chain fatty acid´Â triglyceride ¿Í lipid dropletÀÇ ÇüÅ·ΠÀúÀå °¡´ÉÇÏ´Ù. Palmitate´Â CDP-DAG, DAG, ±×¸®°í triglyceride·Î º¯È¯ °¡´ÉÇÏ´Ù. DAG·Î º¯È¯µÈ ÁöÁúÀº ¼¼Æ÷¸·ÀÇ phospholipid, ¼ÒÆ÷ü¿¡¼­ PC, PE, PI, PSµîÀ¸·Î ÇÕ¼ºµÉ ¼ö ÀÖ´Ù. ÁöÁú ´ë»ç´Â ¼¼Æ÷ ´ë»ç Ç׻󼺿¡ Áß¿äÇÑ Á¶ÀýÀÚÀÌ´Ù.

  Áú·® ºÐ¼® À̹Ì¡ µîÀ» ÅëÇØ ¾à¸®ÇÐÀû Ç¥Àû ½ºÅ©¸®´×, ¾Ï¼¼Æ÷¿¡¼­ÀÇ ÁöÁúÁ¾ÀÇ ºÐÆ÷ µîÀÇ ½Ã°¢È­´Â ÁöÁúÁ¾ÀÇ »ý¹°ÇÐÀû ±â´ÉÀ» ÀÌÇØÇÏ´Â µ¥ Å« ¹ßÀü°ú ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Ù. °á·ÐÀûÀ¸·Î, ¾î¶² ÁöÁú Á¾ÀÌ Ç¥Àû ¾Ï¼¼Æ÷¿¡¼­ ƯÀÌÀûÀ¸·Î Áõ°¡ ¶Ç´Â °¨¼ÒÇÏ´ÂÁö¸¦ ¾Ë¸é Áø´Ü¿¡ Àû¿ëÇÒ ¼ö ÀÖÀ» »Ó ¾Æ´Ï¶ó, »ýü È°¼º ÁöÁúÁ¾À» Ç¥ÀûÀ¸·Î ÇÏ´Â »õ·Î¿î Ç×¾Ï Ä¡·á Àü·«À» Á¦½ÃÇÒ ¼ö ÀÖ´Ù. À̸¦ À§ÇØ, ÇâÈÄ ¾î¶² »ýü È°¼º ÁöÁúÁ¾ÀÌ ¾Ï¼¼Æ÷ÀÇ »ýÁ¸À» À¯µµÇÏ´ÂÁö¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ±âÀü ¿¬±¸°¡ ÇÊ¿äÇÒ °ÍÀ¸·Î »ç·áµÈ´Ù. ¶ÇÇÑ, ÁöÁúÀÇ ±¸Á¶Àû ´Ù¾ç¼ºÀ» ¿ÏÀüÈ÷ Ư¼ºÈ­ÇÏ´Â ±â¼úÀ» °³¹ßÇÏ´Â °ÍÀº Áö¼ÓÀûÀÎ °úÁ¦ÀÌ´Ù.

Âü°í¹®Çå

  • [1]

    French, A.N., Wilson, S.R., Welch, M.J., and Katzenellenbogen, J.A. (1993). A synthesis of 7 alpha-substituted estradiols: synthesis and biological evaluation of a 7 alpha-pentyl-substituted BODIPY fluorescent conjugate and a fluorine-18-labeled 7 alpha-pentylestradiol analog. Steroids 58, 157-169.

  • [2]

    Mehlem, A., Hagberg, C.E., Muhl, L., Eriksson, U., and Falkevall, A. (2013). Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc. 8, 1149-1154.

  • [3]

    Boden, G. (2008). Obesity and free fatty acids. Endocrinol. Metab. Clin. North Am. 37, 635-646, viii - ix.

  • [4]

    Reaven, G.M., Hollenbeck, C., Jeng, C.Y., Wu, M.S., and Chen, Y.D. (1988). Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37, 1020-1024.

  • [5]

    Piccolis, M., Bond, L.M., Kampmann, M., Pulimeno, P., Chitraju, C., Jayson, C.B.K., Vaites, L.P., Boland, S., Lai, Z.W., Gabriel, K.R., et al. (2019). Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated Fatty Acids. Mol. Cell 74, 32-44.e8.

  • [6]

    Zhu, X.G., Nicholson Puthenveedu, S., Shen, Y., La, K., Ozlu, C., Wang, T., Klompstra, D., Gultekin, Y., Chi, J., Fidelin, J., et al. (2019). CHP1 Regulates Compartmentalized Glycerolipid Synthesis by Activating GPAT4. Mol. Cell 74, 45-58.e7.

  • [7]

    Lytrivi, M., Castell, A.-L., Poitout, V., and Cnop, M. (2020). Recent Insights Into Mechanisms of ¥â-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes. J. Mol. Biol. 432, 1514-1534.

  • [8]

    Sharma, R.B., and Alonso, L.C. (2014). Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well? Curr. Diab. Rep. 14, 492.

  • [9]

    Bader, J.E., Voss, K., and Rathmell, J.C. (2020). Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol. Cell 78, 1019-1033.

  • [10]

    German, N.J., Yoon, H., Yusuf, R.Z., Murphy, J.P., Finley, L.W.S., Laurent, G., Haas, W., Satterstrom, F.K., Guarnerio, J., Zaganjor, E., et al. (2016). PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2. Mol. Cell 63, 1006-1020.

  • [11]

    Vriens, K., Christen, S., Parik, S., Broekaert, D., Yoshinaga, K., Talebi, A., Dehairs, J., Escalona-Noguero, C., Schmieder, R., Cornfield, T., et al. (2019). Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature 566, 403-406.

  • [12]

    Harayama, T., and Riezman, H. (2018). Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281-296.

  • [13]

    Rohrig, F., and Schulze, A. (2016). The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732-749.

  • [14]

    Bi, J., Ichu, T.A., Zanca, C., Yang, H., Zhang, W., Gu, Y., Chowdhry, S., Reed, A., Ikegami, S., Turner, K.M., Zhang, W., Villa, G.R., Wu, S., Quehenberger, O., Yong, W.H., Kornblum, H.I., Rich, J.N., Cloughesy, T.F., Cavenee, W.K., Furnari, F.B., Cravatt, B.F., Mischel, P.S. (2019). Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 30, 525-538.

  • [15]

    Magtanong, L., Ko, P.J., To, M., Cao, J.Y., Forcina, G.C., Tarangelo, A., Ward, C.C., Cho, K., Patti, G.J., Nomura, D.K., Olzmann, J.A., Dixon, S.J. (2019). Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State. Cell Chem Biol. 26, 420-432.

  • [16]

    Hashidate-Yoshida, T., Harayama, T., Hishikawa, D., Morimoto, R., Hamano, F., Tokuoka, S.M., Eto, M., Tamura-Nakano, M., Yanobu-Takanashi, R., Mukumoto, Y., Kiyonari, H., Okamura, T., Kita, Y., Shindou, H., and Shimizu, T. (2015). Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. Elife. 4, e06328.

  • [17]

    Kuwata, H., and Hara, S. (2019). Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism. Prostaglandins Other Lipid Mediat. 144, 106363.

  • [18]

    Poillet-Perez, L., and White, E. (2019). Role of tumor and host autophagy in cancer metabolism. Genes Dev. 33, 610-619.

  • [19]

    Hardy, S., El-Assaad, W., Przybytkowski, E., Joly, E., Prentki, M., and Langelier, Y. (2003). Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J. Biol. Chem. 278, 31861-31870.

  • [20]

    Yang, K., Cheng, H., Gross, R.W., and Han, X. (2009). Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal. Chem. 81, 4356-4368.

  • [21]

    Senkal, C.E., Salama, M.F., Snider, A.J., Allopenna, J.J., Rana, N.A., Koller, A., Hannun, Y.A., and Obeid, L.M. (2017). Ceramide Is Metabolized to Acylceramide and Stored in Lipid Droplets. Cell Metab. 25, 686-697.

  • [22]

    Cheng, G., Palanisamy, A.P., Evans, Z.P., Sutter, A.G., Jin, L., Singh, I., May, H., Schmidt, M.G., and Chavin, K.D. (2013). Cerulenin blockade of fatty acid synthase reverses hepatic steatosis in ob/ob mice. PLoS One 8, e75980.

  • [23]

    Dierge, E., Debock, E., Guilbaud, C., Corbet, C., Mignolet, E., Mignard, L., Bastien, E., Dessy, C., Larondelle, Y., and Feron, O. (2021). Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab.

  • [24]

    Stockwell, B., R, Friedmann Angeli, J., Pedro, Bayir, H., Bush, A., I, Conrad, M., Dixon, S., J, Fulda, S., Gasco¢¥ n, S., Hatzios, S., K, Kagan, V., E, et al. (2017). Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 171, 273-285.

  • [25]

    Kuhn, H., Banthiya, S., and van Leyen, K. (2015). Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 1851, 308-330.

  • [26]

    Lee, J.-Y., Nam, M., Son, H.Y., Hyun, K., Jang, S.Y., Kim, J.W., Kim, M.W., Jung, Y., Jang, E., Yoon, S.-J., et al. (2020). Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc. Natl. Acad. Sci. U S A 117, 32433-32442.

  • [27]

    Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., Roberts, M.A., Tong, B., Maimone, T.J., Zoncu, R., et al. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688-692.

  • [28]

    Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., Goya Grocin, A., Xavier da Silva, T.N., Panzilius, E., Scheel, C.H., et al. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693-698.

  • [29]

    Wang, Y., Tang, K., Zhang, W., Guo, W., Wang, Y., Zan, L., and Yang, W. (2019). Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver. PLoS One 14, e0214144.

  • [30]

    Samudio, I., Harmancey, R., Fiegl, M., Kantarjian, H., Konopleva, M., Korchin, B., Kaluarachchi, K., Bornmann, W., Duvvuri, S., Taegtmeyer, H., et al. (2010). Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 120, 142-156.

  • [31]

    Beckers, A., Organe, S., Timmermans, L., Scheys, K., Peeters, A., Brusselmans, K., Verhoeven, G., and Swinnen, J.V. (2007). Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67, 8180-8187.

  • [32]

    Pizer, E.S., Thupari, J., Han, W.F., Pinn, M.L., Chrest, F.J., Frehywot, G.L., Townsend, C.A., and Kuhajda, F.P. (2000). Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res. 60, 213-218.

  • [33]

    Goransson, O., McBride, A., Hawley, S.A., Ross, F.A., Shpiro, N., Foretz, M., Viollet, B., Hardie, D.G., and Sakamoto, K. (2007). Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J. Biol. Chem. 282, 32549-32560.

  • [34]

    Brenner, A.J., Von Hoff, D.D., Infante, J.R., Patel, M.R., Jones, S.F., Burris, H.A., Rubino, C., McCulloch, W., Zhukova-Harrill, V., and Kemble, G. (2015). First-in-human investigation of the oral first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. J. Clin. Orthod. 33, TPS2615-TPS2615.

  • [35]

    Pollak, M.N. (2012). Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2, 778-790.

  • [36]

    Jose, C., Hebert-Chatelain, E., Bellance, N., Larendra, A., Su, M., Nouette-Gaulain, K., and Rossignol, R. (2011). AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim. Biophys. Acta 1807, 707-718.

  • [37]

    Hatzivassiliou, G., Zhao, F., Bauer, D.E., Andreadis, C., Shaw, A.N., Dhanak, D., Hingorani, S.R., Tuveson, D.A., and Thompson, C.B. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311-321.

  • [38]

    Migita, T., Narita, T., Nomura, K., Miyagi, E., Inazuka, F., Matsuura, M., Ushijima, M., Mashima, T., Seimiya, H., Satoh, Y., et al. (2008). ATP Citrate Lyase: Activation and Therapeutic Implications in Non-Small Cell Lung Cancer. Cancer Res. 68, 8547-8554.

  • [39]

    Coburn, C.T., Hajri, T., Ibrahimi, A., and Abumrad, N.A. (2001). Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. J. Mol. Neurosci. 16, 117-121.

  • [40]

    Love-Gregory, L., Sherva, R., Sun, L., Wasson, J., Schappe, T., Doria, A., Rao, D.C., Hunt, S.C., Klein, S., Neuman, R.J., et al. (2008). Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17, 1695-1704.

  • [41]

    Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C.S.-O., Berenguer, A., Prats, N., Toll, A., Hueto, J.A., et al. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41-45.

  • [42]

    Wang, H., Franco, F., Tsui, Y.-C., Xie, X., Trefny, M.P., Zappasodi, R., Mohmood, S.R., Fernandez-Garcia, J., Tsai, C.-H., Schulze, I., et al. (2020). CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 21, 298-308.

  • [43]

    DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C.B. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences 104, 19345-19350.

  • [44]

    Carracedo, A., Cantley, L.C., and Pandolfi, P.P. (2013). Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227-232.

  • [45]

    Reddy, J.K., and Hashimoto, T. (2001). Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu. Rev. Nutr. 21, 193-230.

ÀúÀÚ¾à·Â

  • 2004-2009

    °Ç±¹´ëÇб³ ÀÌ°ú´ëÇÐ, Çлç

  • 2009-2011

    ¼­¿ï´ëÇб³ ÀÇ°ú´ëÇÐ, ¼®»ç

  • 2011-2014

    ¼­¿ï´ëÇб³ ÀÇ°ú´ëÇÐ, ¹Ú»ç

  • 2015-2022

    Harvard Medical School, ¹Ú»ç ÈÄ ¿¬±¸¿ø

  • 2022-ÇöÀç

    ¿ï»ê°úÇбâ¼ú¿ø »ý¸í°úÇаú, Á¶±³¼ö