연세대학교 치과대학

CV(PDF)

이메일
RANKL-mediated Reactive Oxygen Species Pathway That Induces Long Lasting Ca2+ Oscillations Essential for Osteoclastogenesis
펼치기 Authors and Affiliations
Abstract

RANKL (receptor activator of NF-κB ligand) induces osteoclastogenesis by activating multiple signaling pathways in osteoclast precursor cells, chief among which is induction of long lasting oscillations in the intracellular concentration of Ca2+ ([Ca2+]i). The [Ca2+]i oscillations activate calcineurin, which activates the transcription factor NFATc1. The pathway by which RANKL induces [Ca2+]i oscillations and osteoclastogenesis is poorly understood. Here we report the discovery of a novel pathway induced by RANKL to cause a long lasting increase in reactive oxygen species (ROS) and [Ca2+]i oscillations that is essential for differentiation of bone marrow-derived monocytes into osteoclasts. The pathway includes RANKL-mediated stimulation of Rac1 to generate ROS, which stimulate phospholipase Cγ1 to evoke [Ca2+]i oscillations by stimulating Ca2+ release from the inositol 1,4,5-trisphosphate pool and STIM1-regulated Ca2+ influx. Induction and activation of the pathway is observed only after 24-h stimulation with RANKL and lasts for at least 3 days. The physiological role of the pathway is demonstrated in mice with deletion of the Peroxiredoxin II gene and results in a mark increase is ROS and, consequently, a decrease in bone density. Moreover, bone marrow-derived monocytes in PrxII−/− primary culture show increased ROS and spontaneous [Ca2+]i oscillations. These findings identify the primary RANKL-stimulated pathway to trigger the late stages of osteoclastogenesis and regulate bone resorption.

주소복사
논문정보   
- 형식: Research article
- 게재일: 2010년 03월 (BRIC 등록일 2020-03-27)
- 연구진: 국내(교신)+국외 연구진태극기
- 분야: Cell_Biology, Molecular_Biology, Physiology
- 피인용횟수: 120회 이상 인용된 논문
댓글 (0)
웨비나 참석자 모집중...
HOME   |   이용약관   |   개인정보처리방침
© BRIC