김용식 (Yongsig Kim) Michigan State University
CV (91.56 KB)
이메일
Mol. Plant., Available online 14 November 2019 | https://doi.org/10.1016/j.molp.2019.11.001
Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes
펼치기 Authors and Affiliations
Abstract

The Arabidopsis thaliana Calmodulin-binding Transcription Activator (CAMTA) transcription factors CAMTA1, CAMTA2 and CAMTA3 (CAMTA123) serve as master regulators of salicylic acid (SA)-mediated immunity, repressing the biosynthesis of SA in healthy plants. Here we show that CAMTA123 also repress the biosynthesis of pipecolic acid (Pip) in healthy plants. Loss of CAMTA123 function resulted in the induction of AGD2-like Defense Response Protein 1 (ALD1), which encodes an enzyme involved in Pip biosynthesis. Induction of ALD1 resulted in the accumulation of high levels of Pip which brought about increased levels of the SA-receptor protein NPR1 without induction of NPR1 or requirement for an increase in SA levels. Pip-mediated induction of ALD1 and genes regulating the biosynthesis of SA—CBP60g, SARD1, PAD4 and EDS1—was largely dependent on NPR1. Further, Pip-mediated increase in NPR1 protein levels was associated with priming of Pip and SA biosynthesis genes to induction by low levels of SA. Taken together, our findings expand the role for CAMTA123 in regulating key immunity genes and suggest a working model whereby loss of CAMTA123 repression leads to the induction of plant defense genes and initiation of SAR.

Key words : Arabidopsis thaliana; Pipecolic Acid; Salicylic Acid; Plant Immunity; Priming; CAMTA transcription factors

Category: Plant Science, Biochemistry, Molecular_Biology
등록일 2019.11.28
주소복사
댓글 (0)
© BRIC